handler.hpp 7.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296
  1. #ifndef _FY_HANDLER_HPP_
  2. #define _FY_HANDLER_HPP_
  3. #include <unistd.h>
  4. #include <errno.h>
  5. #include <string.h>
  6. #include <sys/eventfd.h>
  7. #include <sys/epoll.h>
  8. #include <pthread.h>
  9. #include <list>
  10. #include <system/Thread.h>
  11. #include "time.hpp"
  12. #include "utils/Log.h"
  13. #define TEMP_FAILURE_RETRY2(exp) ({ \
  14. int _rc; \
  15. do { \
  16. _rc = (exp); \
  17. } while (_rc == -1 && errno == EINTR); \
  18. _rc; })
  19. namespace base {
  20. template <typename T = void*>
  21. class handler;
  22. template <typename T = void*>
  23. class message {
  24. public:
  25. message(int what): what(what),when_(0),period_(0),runable_(NULL),user_data_(NULL) {
  26. }
  27. message(int what, T obj): what(what),obj(obj),when_(0),period_(0),runable_(NULL),user_data_(NULL) {
  28. }
  29. int what;
  30. T obj;
  31. private:
  32. int64_t when_;
  33. int64_t period_;
  34. void* runable_;
  35. const void* user_data_;
  36. friend class base::handler<T>;
  37. };
  38. template <typename T>
  39. class handler {
  40. public:
  41. typedef void (*func_message_handler)(const message<T>* msg, const void* user_data);
  42. typedef void (*func_runable)(const void* user_data);
  43. public:
  44. explicit handler(func_message_handler func_handler, const void* user_data)
  45. :looper_(this), user_data_((void*)user_data) {
  46. initialize();
  47. message_handler_ = func_handler;
  48. }
  49. explicit handler():looper_(this), user_data_(NULL) {
  50. initialize();
  51. }
  52. ~handler() {
  53. exit_ = true;
  54. wake();
  55. looper_.requestExitAndWait();
  56. close(epoll_fd_);
  57. close(wake_event_fd_);
  58. message_queue_.clear();
  59. }
  60. /**
  61. * typedef void (*func_message_handler)(const message* msg, const void* user_data);
  62. */
  63. void set_message_handler(func_message_handler func, const void* user_data) {
  64. message_handler_ = func;
  65. user_data_ = (void*)user_data;
  66. }
  67. void send_message(int what) {
  68. message<T> msg(what);
  69. enqueue_with_lock(msg);
  70. }
  71. void send_message(message<T> &msg) {
  72. enqueue_with_lock(msg);
  73. }
  74. void send_message_delayed(int what, int delay_millis) {
  75. message<T> msg(what);
  76. msg.when_ = base::time::uptime() + delay_millis;
  77. enqueue_with_lock(msg);
  78. }
  79. void send_message_delayed(message<T> &msg, int delay_millis) {
  80. msg.when_ = base::time::uptime() + delay_millis;
  81. enqueue_with_lock(msg);
  82. }
  83. void post(func_runable runable, const void* user_data) {
  84. message<T> msg(0);
  85. msg.runable_ = (void*)runable;
  86. msg.user_data_ = user_data;
  87. enqueue_with_lock(msg);
  88. }
  89. /**
  90. * typedef void (*func_runable)(const void* user_data);
  91. */
  92. void post_delayed(func_runable runable, const void* user_data, int delay_millis) {
  93. message<T> msg(0);
  94. msg.runable_ = (void*)runable;
  95. msg.user_data_ = user_data;
  96. msg.when_ = base::time::uptime() + delay_millis;
  97. enqueue_with_lock(msg);
  98. }
  99. void schedule(int what, int period_millis, int delay_millis) {
  100. message<T> msg(what);
  101. msg.when_ = base::time::uptime() + delay_millis;
  102. msg.period_ = period_millis;
  103. enqueue_with_lock(msg);
  104. }
  105. void schedule(message<T> &msg, int period_millis, int delay_millis) {
  106. msg.when_ = base::time::uptime() + delay_millis;
  107. msg.period_ = period_millis;
  108. enqueue_with_lock(msg);
  109. }
  110. void remove_messages(int what) {
  111. Mutex::Autolock lock(mutex_);
  112. typename std::list<message<T> >::iterator it;
  113. for (it = message_queue_.begin(); it != message_queue_.end(); ) {
  114. if (it->what == what) {
  115. it = message_queue_.erase(it);
  116. } else {
  117. ++it;
  118. }
  119. }
  120. }
  121. typedef bool (*remove_filter)(const message<T>& msg, void* user_data);
  122. void remove_messages(remove_filter filter, void* user_data) {
  123. Mutex::Autolock lock(mutex_);
  124. typename std::list<message<T> >::iterator it;
  125. for (it = message_queue_.begin(); it != message_queue_.end(); ) {
  126. if (filter(*it, user_data)) {
  127. it = message_queue_.erase(it);
  128. } else {
  129. ++it;
  130. }
  131. }
  132. }
  133. bool has_message(int what) {
  134. Mutex::Autolock lock(mutex_);
  135. typename std::list<message<T> >::iterator it;
  136. for (it = message_queue_.begin(); it != message_queue_.end(); ) {
  137. if (it->what == what) {
  138. return true;
  139. }
  140. }
  141. return false;
  142. }
  143. private:
  144. void initialize() {
  145. init_ = false;
  146. wake_event_fd_ = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC);
  147. message_handler_ = NULL;
  148. const int kEpollSizeHint = 1;
  149. epoll_fd_ = epoll_create(kEpollSizeHint);
  150. if (epoll_fd_ < 0) {
  151. LOGE("%s %d epoll_create failed", __func__, __LINE__);
  152. return;
  153. }
  154. struct epoll_event eventItem;
  155. memset(&eventItem, 0, sizeof(epoll_event));
  156. eventItem.events = EPOLLIN | EPOLLET;
  157. eventItem.data.fd = wake_event_fd_;
  158. int result = epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, wake_event_fd_, &eventItem);
  159. if (result < 0) {
  160. LOGE("%s %d epoll_ctl failed", __func__, __LINE__);
  161. return;
  162. }
  163. exit_ = false;
  164. init_ = true;
  165. looper_.run("sup.handler");
  166. }
  167. void loop() {
  168. while (!exit_) {
  169. if (message_queue_.empty()) {
  170. wait(10 * 1000);
  171. awoken();
  172. continue;
  173. }
  174. mutex_.lock();
  175. base::message<T> front = message_queue_.front();
  176. int64_t now = base::time::uptime();
  177. if (front.when_ <= now) {
  178. message_queue_.pop_front();
  179. if (front.period_ > 0) {
  180. front.when_ = base::time::uptime() + front.period_;
  181. enqueue(front);
  182. }
  183. mutex_.unlock();
  184. if (front.runable_) {
  185. ((func_runable)front.runable_)(front.user_data_);
  186. } else if (message_handler_) {
  187. message_handler_(&front, user_data_);
  188. }
  189. continue;
  190. }
  191. mutex_.unlock();
  192. wait(front.when_ - now);
  193. awoken();
  194. }
  195. }
  196. void wait(int timeout_millis) {
  197. const int kEpollMaxEvents = 1;
  198. struct epoll_event eventItems[kEpollMaxEvents];
  199. int event_count = epoll_wait(epoll_fd_, eventItems, kEpollMaxEvents, timeout_millis);
  200. if (event_count < 0) {
  201. LOGE("%s %d epoll_wait failed", __func__, __LINE__);
  202. }
  203. }
  204. void wake() {
  205. uint64_t inc = 1;
  206. ssize_t nWrite = TEMP_FAILURE_RETRY2(write(wake_event_fd_, &inc, sizeof(uint64_t)));
  207. if (nWrite != sizeof(uint64_t)) {
  208. if (errno != EAGAIN) {
  209. LOGE("Could not write wake signal, errno=%d", errno);
  210. }
  211. }
  212. }
  213. void awoken() {
  214. uint64_t counter = 0;
  215. TEMP_FAILURE_RETRY2(read(wake_event_fd_, &counter, sizeof(uint64_t)));
  216. }
  217. void enqueue(const message<T> &msg) {
  218. typename std::list<message<T> >::iterator it;
  219. for (it = message_queue_.begin(); it != message_queue_.end(); ++it) {
  220. if (msg.when_ < it->when_) {
  221. it = message_queue_.insert(it, msg);
  222. if (it == message_queue_.begin()) {
  223. wake();
  224. }
  225. return;
  226. }
  227. }
  228. message_queue_.push_back(msg);
  229. if (message_queue_.size() == 1) {
  230. wake();
  231. }
  232. }
  233. void enqueue_with_lock(const message<T> &msg) {
  234. Mutex::Autolock lock(mutex_);
  235. enqueue(msg);
  236. }
  237. class Looper : public Thread {
  238. public:
  239. Looper(handler<T> *handler):handler_(handler){}
  240. virtual bool threadLoop() {
  241. handler_->loop();
  242. return false;
  243. }
  244. handler<T>* handler_;
  245. };
  246. Looper looper_;
  247. std::list<message<T> > message_queue_;
  248. func_message_handler message_handler_;
  249. void* user_data_;
  250. int wake_event_fd_;
  251. int epoll_fd_;
  252. bool init_;
  253. volatile bool exit_;
  254. Mutex mutex_;
  255. };
  256. } /* namespace sup */
  257. #endif /* _FY_HANDLER_HPP_ */